ELECTROMAGNETIC MODELLING OF POWER ELECTRONIC CONVERTERS pdf

1: Electromagnetic Modelling Of Power Electronic Converters | Download eBook PDF/EPUB

Electromagnetic Modelling of Power Electronic Converters (Power Electronics and Power Systems) [J.A. Ferreira] on www.enganchecubano.com *FREE* shipping on qualifying offers. The era of the personal computer has, without doubt, permanently altered our life style in a myriad of ways.

Single-Phase Half-Bridge Voltage Source Inverter The single-phase voltage source half-bridge inverters, are meant for lower voltage applications and are commonly used in power supplies. Low-order current harmonics get injected back to the source voltage by the operation of the inverter. This means that two large capacitors are needed for filtering purposes in this design. If both switches in a leg were on at the same time, the DC source will be shorted out. Inverters can use several modulation techniques to control their switching schemes. If the over-modulation region, ma, exceeds one, a higher fundamental AC output voltage will be observed, but at the cost of saturation. For SPWM, the harmonics of the output waveform are at well-defined frequencies and amplitudes. This simplifies the design of the filtering components needed for the low-order current harmonic injection from the operation of the inverter. The maximum output amplitude in this mode of operation is half of the source voltage. If the maximum output amplitude, ma, exceeds 3. Therefore, the AC output voltage is not controlled by the inverter, but rather by the magnitude of the DC input voltage of the inverter. The fundamental component of the AC output voltage can also be adjusted within a desirable range. Since the AC output voltage obtained from this modulation technique has odd half and odd quarter wave symmetry, even harmonics do not exist. Carrier and Modulating Signals for the Bipolar Pulsewidth Modulation Technique The full-bridge inverter is similar to the half bridge-inverter, but it has an additional leg to connect the neutral point to the load. Any modulating technique used for the full-bridge configuration should have either the top or the bottom switch of each leg on at any given time. Due to the extra leg, the maximum amplitude of the output waveform is Vi, and is twice as large as the maximum achievable output amplitude for the half-bridge configuration. The AC output voltage can take on only two values, either Vi or â€"Vi. To generate these same states using a half-bridge configuration, a carrier based technique can be used. Unlike the bipolar PWM technique, the unipolar approach uses states 1, 2, 3 and 4 from Table 2 to generate its AC output voltage. Therefore, the AC output voltage can take on the values Vi, 0 or â€"V [1]i. To generate these states, two sinusoidal modulating signals, Vc and â€"Vc, are needed, as seen in Figure 4. The phase voltages VaN and VbN are identical, but degrees out of phase with each other. The output voltage is equal to the difference of the two phase voltages, and do not contain any even harmonics. Therefore, if mf is taken, even the AC output voltage harmonics will appear at normalized odd frequencies, fh. These frequencies are centered on double the value of the normalized carrier frequency. This particular feature allows for smaller filtering components when trying to obtain a higher quality output waveform. States 7 and 8 produce zero AC line voltages, which result in AC line currents freewheeling through either the upper or the lower components. However, the line voltages for states 1 through 6 produce an AC line voltage consisting of the discrete values of Vi, 0 or â€"Vi. In order to preserve the PWM features with a single carrier signal, the normalized carrier frequency, mf, needs to be a multiple of three. This keeps the magnitude of the phase voltages identical, but out of phase with each other by degrees. In applications requiring sinusoidal AC waveforms, magnitude, frequency, and phase should all be controlled. CSIs have high changes in current over time, so capacitors are commonly employed on the AC side, while inductors are commonly employed on the DC side. In its most generalized form, a three-phase CSI employs the same conduction sequence as a six-pulse rectifier. At any time, only one common-cathode switch and one common-anode switch are on. States are chosen such that a desired waveform is output and only valid states are used. This selection is based on modulating techniques, which include carrier-based PWM, selective harmonic elimination, and space-vector techniques. The digital circuit utilized for modulating signals contains a switching pulse generator, a shorting pulse generator, a shorting pulse distributor, and a switching and shorting pulse combiner. A gating signal is produced based on

ELECTROMAGNETIC MODELLING OF POWER ELECTRONIC CONVERTERS pdf

a carrier current and three modulating signals. The same methods are utilized for each phase, however, switching variables are degrees out of phase relative to one another, and the current pulses are shifted by a half-cycle with respect to output currents. If a triangular carrier is used with sinusoidal modulating signals, the CSI is said to be utilizing synchronized-pulse-width-modulation SPWM. If full over-modulation is used in conjunction with SPWM the inverter is said to be in square-wave operation. Utilizing the gating signals developed for a VSI and a set of synchronizing sinusoidal current signals, results in symmetrically distributed shorting pulses and, therefore, symmetrical gating patterns. This allows any arbitrary number of harmonics to be eliminated. Optimal switching patterns must have quarter-wave and half-wave symmetry, as well as symmetry about 30 degrees and degrees. Switching patterns are never allowed between 60 degrees and degrees. The current ripple can be further reduced with the use of larger output capacitors, or by increasing the number of switching pulses. Valid switching states and time selections are made digitally based on space vector transformation. Modulating signals are represented as a complex vector using a transformation equation. These space vectors are then used to approximate the modulating signal. If the signal is between arbitrary vectors, the vectors are combined with the zero vectors I7, I8, or I9. Three-Level Neutral-Clamped Inverter A relatively new class called multilevel inverters has gained widespread interest. Normal operation of CSIs and VSIs can be classified as two-level inverters because the power switches connect to either the positive or the negative DC bus. Control methods for a three-level inverter only allow two switches of the four switches in each leg to simultaneously change conduction states. This allows smooth commutation and avoids shoot through by only selecting valid states. Carrier-based and space-vector modulation techniques are used for multilevel topologies. The methods for these techniques follow those of classic inverters, but with added complexity. Space-vector modulation offers a greater number of fixed voltage vectors to be used in approximating the modulation signal, and therefore allows more effective space vector PWM strategies to be accomplished at the cost of more elaborate algorithms. Due to added complexity and number of semiconductor devices, multilevel inverters are currently more suitable for high-power high-voltage applications. AC converters that allow the user to change the frequency are simply referred to as frequency converters for AC to AC conversion. Under frequency converters there are three different types of converters that are typically used: Typically used for heating loads or speed control of motors, this control method involves turning the switch on for n integral cycles and turning the switch off for m integral cycles. Because turning the switches on and off causes undesirable harmonics to be created, the switches are turned on and off during zero-voltage and zero-current conditions zero-crossing, effectively reducing the distortion. Various circuits exist to implement a phase-angle control on different waveforms, such as half-wave or full-wave voltage control. The power electronic components that are typically used are diodes, SCRs, and Triacs. With the use of these components, the user can delay the firing angle in a wave which will only cause part of the wave to be in output. The other two control methods often have poor harmonics, output current quality, and input power factor. In order to improve these values PWM can be used instead of the other methods. What PWM AC Chopper does is have switches that turn on and off several times within alternate half-cycles of input voltage. Cycloconverters are widely used in industry for ac to ac conversion, because they are able to be used in high-power applications. They are commutated direct frequency converters that are synchronised by a supply line. The cycloconverters output voltage waveforms have complex harmonics with the higher order harmonics being filtered by the machine inductance. Causing the machine current to have fewer harmonics, while the remaining harmonics causes losses and torque pulsations. Note that in a cycloconverter, unlike other converters, there are no inductors or capacitors, i. For this reason, the instantaneous input power and the output power are equal. Single-Phase to Single-Phase Cycloconverters started drawing more interest recently[when? The single-phase high frequency ac voltage can be either sinusoidal or trapezoidal. These might be zero voltage intervals for control purpose or zero voltage commutation. Three-Phase to Single-Phase Cycloconverters: There are two kinds of three-phase to single-phase cycloconverters: Both positive and negative converters can generate voltage at either polarity, resulting in the positive converter only supplying

ELECTROMAGNETIC MODELLING OF POWER ELECTRONIC CONVERTERS pdf

positive current, and the negative converter only supplying negative current. With recent device advances, newer forms of cycloconverters are being developed, such as matrix converters. The first change that is first noticed is that matrix converters utilize bi-directional, bipolar switches. A single phase to a single phase matrix converter consists of a matrix of 9 switches connecting the three input phases to the tree output phase. Any input phase and output phase can be connected together at any time without connecting any two switches from the same phase at the same time; otherwise this will cause a short circuit of the input phases. Matrix converters are lighter, more compact and versatile than other converter solutions. As a result, they are able to achieve higher levels of integration, higher temperature operation, broad output frequency and natural bi-directional power flow suitable to regenerate energy back to the utility. The matrix converters are subdivided into two types: A direct matrix converter with three-phase input and three-phase output, the switches in a matrix converter must be bi-directional, that is, they must be able to block voltages of either polarity and to conduct current in either direction. This switching strategy permits the highest possible output voltage and reduces the reactive line-side current. Therefore, the power flow through the converter is reversible. Because of its commutation problem and complex control keep it from being broadly utilized in industry. Unlike the direct matrix converters, the indirect matrix converters has the same functionality, but uses separate input and output sections that are connected through a dc link without storage elements. The design includes a four-quadrant current source rectifier and a voltage source inverter. The input section consists of bi-directional bipolar switches. The commutation strategy can be applied by changing the switching state of the input section while the output section is in a freewheeling mode. This commutation algorithm is significantly less complexity and higher reliability as compared to a conventional direct matrix converter. Meaning that the power in the converter is converted to DC from AC with the use of a rectifier, and then it is converted back to AC from DC with the use of an inverter. The end result is an output with a lower voltage and variable higher or lower frequency. Multiple types of hybrid converters have been developed in this new category, an example being a converter that uses uni-directional switches and two converter stages without the dc-link; without the capacitors or inductors needed for a dc-link, the weight and size of the converter is reduced.

2: Power electronics - Wikipedia

During the early 's electromagnetic design of power converters was identified by the Electronic Power Control Research Group at the Rand Afrikaans University to be an important aspect of future development in power converter technology.

3: electromagnetic modelling of power electronic converters pdf - www.enganchecubano.com

The era of the personal computer has, without doubt, permanently altered our life style in a myriad of ways. The "brain" of the personal computer is the microprocessor (together with RAM and ROM) whic.

4: LearnEMC - Power Electronics Design for Electromagnetic Compatibility

1 Circuit Analysis from an Electromagnetic Viewpoint Design Optimisation beyond the Scope of Conventional Circuit Analysis Techniques.- 2 Poynting Vector, a Method to Describe the Mechanism of.

ELECTROMAGNETIC MODELLING OF POWER ELECTRONIC CONVERTERS pdf

Public and Private Partnerships for Financing Highway Improvements (Report (National Cooperative Highway Parsons Diseases of the eye. Ps4 user guide 12 common networking mistakes how to correct them Molecular docking Garrett M. Morris and Marguerita Lim-Wilby. Sound money: Thatcher, gender and the state XML and SOAP Programming for BizTalk Servers Non-violence and justice as inseparable principles: a Gandhian perspective Veena Rani Howard The Legionnaires in the Praetorium: Americas Abu Ghraibs In-Service Manual Continuing Education Programs for Long Term Care Jesus journey to the cross Caesars Commentaries on the Gallic war Schomberg, Ruvigny and the Huguenots in Ireland: William IIIs Irish war, 1689-91 Harman Murtagh Charles Wesleys Verse Whigs and Democrats, or, Love of no politics Dimensions of private law A Selection of Cases on the Law of Contracts Synaptic Plasticity and Transsynaptic Signaling The Just War: Force and Political Responsibility Cannon to Right of Them . . . Cannon to Left of Them Chicken Recipes the Crafty Way (Crafty Classics) Modern principles of athletic training Pmet 2016 merit list How can I avoid getting stale? Health Services in Britain (Reference Pamphlet) The dynamic nature of SimPlant software Alan L. Rosenfeld Deaths Door (Bob Skinner Mysteries) Nomenclature of diseases and injuries, list of grades and rates and general instructions for blank forms, The far and the deep. A Red Headed Woman V. 3]. Preparatory 2 level, book 1-4 Kevatyo, Op. 27, No. 4 Jacobs operations and supply chain management 15th edition Money Under the Table Friendship according to Humphrey Generating Context Genealogy of the Bigelow family of America The Penny in the Fishs Mouth Application of remote sensing in environmental management Visions of the valley